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a b s t r a c t

Search prefilters developed from spectral data collected on two 6700 Thermo-Nicolet FTIR spectrometers
were able to identify the respective manufacturing plant and the production line of an automotive
vehicle from its clear coat paint smear using IR transmission spectra collected on a Bio-Rad 40A or Bio-
Rad 60 FTIR spectrometer. All four spectrometers were equipped with DTGS detectors. An approach
based on instrumental line functions was used to transfer the classification model between the Thermo-
Nicolet and Bio-Rad instruments. In this study, 209 IR spectra of clear coat paint smears comprising the
training set were collected using two Thermo-Nicolet 6700 IR spectrometers, whereas the validation set
consisted of 242 IR spectra of clear coats obtained using two Bio-Rad FTIR instruments.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Automotive paints consist of multiple layers of paint: original
and repaint layers, topcoats and primers [1,2]. An original factory
applied paint system for a motor vehicle has a typical layer
sequence of substrate, primer, primer–surfacer, color coat and
clear coat. A forensic database for automotive paints, known as the
Paint Data Query (PDQ) database, was created by the Royal
Canadian Mounted Police (RCMP) Forensic Laboratory Services to
identify the model, line, and production year range of a vehicle
from a paint sample recovered at a crime scene [3,4]. PDQ contains
information about the physical attributes, the chemical composi-
tion and the infrared (IR) spectrum of each layer of the original
paint system for a motor vehicle. If the original automotive paint is
present in a paint sample, PDQ can assist in identifying the specific
manufacturer and year of manufacture of the motor vehicle. Cur-
rently, PDQ is the largest international automotive paint database in
existence, and is being used by forensic scientists working in Canada,
United States, Australia, New Zealand, Singapore, Japan, South Africa,
the Middle East, and many European countries.

PDQ was designed as a general text-based search and retrieval
system [5,6]. The text-based search of both the physical and
chemical characteristics of each layer of automotive paint can

serve as a potent pre-screen to a manual infrared spectral search of
materials that tend to be chemically very similar to one another.
However, pattern recognition software coupled with this database
has the potential for more specific searches by relying less on
subjective text-based characteristics. PDQ contains information on
the complete topcoat and undercoat paint layers of most domestic
and foreign vehicles marketed or imported into North America
since the mid-1970s.

The major problem with PDQ is its use of text to code chemical
information about each paint layer. Searches of the PDQ database
require the user to code their IR spectrum according to predeter-
mined guidelines, and to search these codes against the codes in
the database. Direct searching of IR spectra in the database does
not exist, and commercial library search algorithms cannot distin-
guish subtle differences between IR spectra from one model to the
next. The coding used in PDQ is generic, which can impair both the
accuracy of the search and lead to non-specific search criteria that
result in a large number of hits that a scientist must then work
through and eliminate. Furthermore, the text based system of PDQ
does not allow for searching of clear coats. All modern clear coats
applied to automotive components have only one of two possible
formulations. They are coded as either acrylic melamine styrene or
acrylic melamine styrene polyurethane. With the exception of the
clear coats, each paint layer contains color pigments and fillers. As
there are no inorganic fillers or color with which to further
discriminate a clear coat, paint samples that do not contain the
color coat layer or at least one of the undercoat (primer) layers
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cannot be searched for in PDQ because the text based search
system relies on the relatively large variations of color and
chemical formulations present in the color coat or undercoat
layers. The inability to accurately search IR spectra in PDQ and
the inability to identify clear coats are significant limitations to the
current text-based PDQ database.

Our research group has used pattern recognition techniques to
search the IR spectral libraries of the PDQ database in an effort to
differentiate between similar but nonidentical IR paint spectra and
to correctly identify an unknown paint sample as to the assembly
plant, model, and line of the vehicle [7,8]. Searches with commer-
cial library search algorithms have met with only limited success
as automotive paint libraries are composed of a large number of
similar spectra and commercial search algorithms have not proven
to be sufficiently sensitive at distinguishing shoulders and minor
peaks which can be crucial for identifying specific models and
lines. By applying wavelets [9,10], subtle but significant features in
the IR spectra of clear coats can be enhanced by decomposing each
spectrum into wavelet coefficients which represent the sample's
constituent frequency. A genetic algorithm (GA) for pattern recog-
nition analysis [11,12] is used to identify wavelet coefficients
characteristic of the assembly plant of the automobile from which
the clear coat paint sample was obtained. Even in challenging
trials where the samples evaluated were all the same make
(Chrysler) with a limited production year range (1999–2000), the
respective assembly plants and line of the motor vehicles could be
correctly identified [13,14] using search prefilters (i.e., discrimi-
nants) developed from wavelet coefficients identified by the
pattern recognition GA.

The use of search prefilters generates fewer hits and increases
accuracy, translating into a significant time savings for the forensic
scientist. Information derived from the proposed pattern recogni-
tion searches also serves to quantify the general discrimination
power of original automotive paint comparisons encountered in
casework, and will further efforts to succinctly communicate the
significance of the evidence to the courts. Addressing these
concerns is a direct response to Recommendation 3 of the National
Academies' February 2009 report [15], “Strengthening Forensic
Science in the United States: A Path Forward.”

Analogous to the situation found in multivariate calibration, a
classification model (i.e., a search prefilter) developed from IR
spectra measured on one instrument is often not valid when applied
to the prediction of spectra collected on a second instrument. As a
result of the large number and variety of FTIR spectrometers sold,
the ability to transfer multivariate classification models between
FTIR spectrometers is crucial for the successful application of the
search prefilters developed using IR data from the PDQ database.
Therefore, the transfer of multivariate classification models between
laboratory spectrometers has been investigated as part of this study.
Algorithms previously developed to implement classification trans-
fer can be divided into two groups. In the first group, a set of
standards common to both the primary and secondary instruments
is used to correct for unwanted instrumental variation. Of these
approaches, the most popular are piecewise direct standardization
[16] and orthogonal signal correction [17]. In the second group,
signal preprocessing and data transformation techniques are used to
correct for unwanted instrumental variation, e.g., finite impulse
response filtering [18] and slope and bias correction [19], as transfer
standards are unavailable.

Although there are discussions, reviews, and algorithm com-
parisons published on this subject, fundamental and first principle
derivations are lacking. Often, practitioners are confronted with
the situation of applying a potpourri of algorithms to their data
to empirically determine what “works” best for their own applica-
tion. They end up searching for models with fewer factors
and smaller standard errors of prediction (without confidence

limits or tolerance verification) rather than applying a thorough
understanding and rigor to seek a more fundamental solution to
the problem of instrument transfer.

In this study, classification transfer was accomplished by
matching spectral line shapes of different instruments using
convolution and deconvolution functions implemented with Nico-
let's OMNIC software system. This allowed the spectra from one
instrument appear to have been collected on a second instrument.
The success of transforming spectral lines between spectrometers
will enable new pattern recognition techniques developed for
spectral library searching of the PDQ database to be implemented
in a large number of forensic laboratories regardless of the
spectrometer used to collect the data.

2. Experimental

IR spectra of clear coats in the PDQ library were collected using
four different FT-IR spectrometers: Bio-Rad 40A, Bio-Rad 60A, and
two Thermo-Nicolet 6700 FTIR spectrometers. All IR spectro-
meters were run at 4 cm�1 resolution. Each spectrometer was
equipped with a DTGS detector. All clear coat paint samples were
between 3 and 4 micrograms. Each paint sample was run using
diamond windows [20,21]. Additional details about the sampling
conditions used to generate the IR data in this study can be found
elsewhere [22].

Using OMNIC, all IR spectra (in both the training set and
validation set) were aligned. The number of points collected in
the wavelength range interrogated by the Thermo-Nicolet instru-
ments varied from 1878 points to 1958 points whereas all spectra
collected on the two Bio-Rad instruments for the same wavelength
range and resolution were represented by 1944 points. Band
shifting was also observed in spectra collected on both the Thermo
Nicolet and Bio-Rad instruments. These problems were resolved
using Nicolet's OMNIC software as an editor to process the Bio-Rad
spectra and the spectra from the Thermo Nicolet instruments
using an appropriate estimate of the spectral line function of the
two Thermo-Nicolet instruments.

Spectral line shapes between instruments were matched using
convolution and deconvolution functions developed with Nicolet's
OMNIC software system. An instrumental line function represen-
tative of the two Thermo Nicolet instruments and developed by
OMNIC was applied to the Bio-Rad spectra to ensure that all
measurements made by the Bio-Rad instruments were comparable
to IR spectra collected on the two Thermo-Nicolet instruments. To
authenticate wavelength alignment along the x-axis for all clear coat
spectra of GM automobiles between the years 2000–2006, IR spectra
of similar clear coat samples collected on both the BioRad and
Thermo Nicolet instruments were subtracted after performing the
alignment procedure. The subtraction yielded zero at each point.

To further improve spectral alignment, we focused on the
region from 600 cm�1 to 1500 cm�1. Each IR spectrum selected
for processing was normalized to the helium neon laser frequency
of 15798.0 cm�1. The laser frequency value was set to that
measured at the aperature setting. This makes the sample peak
positions independent of aperature setting. This also results in a
change in data point spacing and the resulting data point loca-
tions. Although the default laser frequency of the spectrometer is
15798.3 cm�1, 15798.0 cm�1 was used as it also solved problems
when importing spectra from GRAMS and other instruments. This
ensured proper spectral alignment along the x-axis for imported
Bio-Rad spectra to the Thermo-Nicolet instrument.

For alignment along the y-axis (transmittance) of the spectra
(600–1500 cm�1), we ensured that all spectra started from the
same transmittance value. The quality of the diamond cell trans-
mission spectra in the PDQ library (e.g., no sloping baseline or
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baseline offsets, and the value of the carbonyl absorbance peak in
all library spectra being unity) proved pivotal in the successful
alignment of these spectra along the y-axis.

3. Data analysis

Spectral features characteristic of the manufacturer plant or
model of the vehicle were identified by a genetic algorithm (GA)
for pattern recognition analysis that utilized supervised learning to
identify coefficients that optimize separation of the IR spectra by
manufacturing plant in a plot of the two or three largest principal
components of the data. Because principal components maximize
variance, the bulk of the information encoded by the features
selected by the pattern recognition GA is about differences
between the different classes (assembly plants) in the data. A
principal component plot that shows separation of the data by
class can only be generated using features whose variance or
information is primarily about differences between the classes.
This criterion used in the fitness function of the pattern recogni-
tion GA will reduce the size of the search space. To minimize
convergence to a local optimum, the pattern recognition GA
focuses on specific classes and/or samples difficult to classify by
boosting the relative importance of these classes and/or samples
in the calculation for fitness during training. The pattern recogni-
tion GA learns its optimal parameters in a manner similar to a
neural network while simultaneously integrating aspects of arti-
ficial intelligence and evolutionary computations to yield a “smart”
one-pass procedure for feature selection and classification.

Implementation of the pattern recognition GA requires a
population of candidate solutions and heuristics to manipulate
them. The actual procedure involves several interrelated steps.
First, an initial population of feature subsets is generated. During
each generation, the feature subsets are sent to the fitness function
for evaluation. Each feature subset is assigned a value by the
fitness function, which is a measure of the quality of the proposed
feature subset for the classification problem. Reproduction is then
implemented and involves three operators: selection, recombina-
tion, and mutation.

The fitness function of the pattern recognition GA (which is
called PCKaNN) emulates human pattern recognition through
machine learning to score the principal component plots and
thereby identify a set of features that optimize the separation of
the classes in a plot of the two or three largest principal
components of the data. To facilitate the tracking and scoring of
the principal component plots, class and sample weights, which
are an integral part of the fitness function, are computed (see Eqs.
(1) and (2)) where CW(c) is the weight of class c (with c varying
from 1 to the total number of classes in the data set). SWc(s) is the
weight of sample s in class c. The class weights sum to 100, and the
sample weights for the objects comprising a particular class sum
to a value equal to the class weight of the class in question.

CWðcÞ ¼ 100
CWðcÞ

ΣcCWðcÞ ð1Þ

SWðsÞ ¼ CWðcÞ SWðsÞ
ΣsAcSWðsÞ ð2Þ

The scoring of a feature subset by the fitness function of the
pattern recognition GA can be understood by considering the
following binary classification problem. Each class in the data set is
assigned equal weights. The number of samples in Class 1 is 50,
and the number of samples in Class 2 is 10. All samples in a given
class have the same weight during generation 0. Therefore, all
samples in Class 1 have as their sample weight 1, and each sample
in Class 2 has a weight of 5. If a sample from class 2 has 8 class one

samples as its nearest neighbors, SHC/K will equal 0.8, and (SHC/
K)� SW¼0.8�5 or 4. By summing (SHC/Kc)� SW for each sam-
ple, each principal component plot is scored (see Eq. (3)). An
obvious advantage of using this scoring procedure for the principal
component plots is that a class containing a large number of
samples will not dominate the calculation.

∑
c

∑
sA c

1
Kc

� SHCðsÞ � SWðsÞ ð3Þ

By changing (i.e., boosting) the class and sample weights, the
fitness function of the pattern recognition GA is able to focus on
samples and classes that are difficult to classify. To perform
boosting, the sample-hit rate (SHR) and the class-hit rate (CHR)
must be computed. SHR is the mean value of SHC/Kc over all
feature subsets formulated in a particular generation (see Eq. (4))
and CHR is the mean sample hit rate of all samples in a class (see
Eq. (5)). ϕ in Eq. (4) is the number of chromosomes in the
population, and AVG in Eq. (5) is the average or mean value. Class
and sample weights are adjusted in each generation using a
perceptron (see Eqs. (6) and (7)). The momentum term, P, of the
perceptron is set by the user – gþ1 in Eqs. (6) and (7) refer to the
current generation, and g is the previous generation. Classes with a
lower CHR and samples with a lower SHR are boosted more
heavily than classes and samples that score well.

SHRðsÞ ¼ 1
ϕ

∑
ϕ

i ¼ 1

SHCiðsÞ
Kc

ð4Þ

CHRgðcÞ ¼ AVGðSHRgðsÞ : 8 sAcÞ ð5Þ

CWgþ1ðsÞ ¼ CWgðsÞþPð1�CHRgðsÞÞ ð6Þ

SWgþ1ðsÞ ¼ SWgðsÞþPð1�SHRgðsÞÞ ð7Þ
Boosting is crucial to ensure the successful operation of the

pattern recognition GA because it modifies the fitness landscape
by adjusting the values of the class and sample weights. This helps
to minimize the problem of convergence to a local optimum.
Hence, the fitness function of the pattern recognition GA is
continually changing using information from previous generations
as the population is evolving towards a solution. Further details
about the genetic algorithm used for pattern recognition analysis
and feature selection can be found elsewhere [23–31].

For pattern recognition analysis, all clear coat IR transmittance
spectra were normalized to unit length. Each IR spectrum was
initially represented as a data vector, x¼(x1, x2, x3,…xj,……x611)
where x611 is the transmittance of the clear coat paint sample for
the 611th point. The spectral region from 2000 cm�1 to 600 cm�1,
used to develop the search prefilters for plant group, was repre-
sented by 611 points. All spectral features in this region were
autoscaled to ensure that each measurement has a mean of zero
and a standard deviation of one throughout all spectra. Autoscal-
ing removed any inadvertent weighing of the data that otherwise
would occur due to differences in the magnitude among the
measurement variables comprising each IR spectrum.

4. Results and discussion

In this study, 209 IR spectra of clear coat paint smears that
comprised the training set were collected using Thermo-Nicolet
6700 IR spectrometers, whereas the validation set consisted of 242
IR spectra of clear coats obtained using two Bio-Rad IR instru-
ments. The clear coat paint spectra used in this study were
obtained from paint samples collected from automobiles manu-
factured by General Motors (GM) in 21 North American plants
between 2000 and 2006. This made the classification problem
challenging because the samples evaluated were all from the same
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manufacturer (General Motors) with a limited production year
range (2000–2006). Only clear coat paint spectra from metallic
automobile components were used to develop the search prefilters.
IR spectra of clear coats from bumpers and other plastic substrates
were excluded as these components are often not painted in the
same plant where the vehicle is assembled. Table 1 lists the 21 g
manufacturing plants that were investigated in this study.

A hierarchical classification scheme formulated from a visual
inspection of the data was used to develop the search prefilters.
The 21 g manufacturing plants were divided into five major plant
groups (see Table 2). The spectra were initially divided into two
categories based on the carbonyl band at 1729 cm�1. In one
category, the carbonyl band in each spectrum is a singlet (Plant
Groups 1, 3, and 4), and in the other category the carbonyl band is

Table 1
General motors plants investigated in this study.

Plant ID Plant Make Line

1 ARLINGTON CADILLAC, CHEVROLET, GMC SUBURBAN, YUKON, ESCALADE,CTA
3 BOWLING CADILLAC, CHEVROLET CORVETTE, XLR
4 DORAVILLE PONTIAC VENTURE, SILHOUETTE, MONTANA, UPLANDER,
5 FAIRFAX CHEVROLET, PONTIAC, OLDSMOBILE, MALIBU, INTRIGUE
6 FLINT CHEVROLET, GMC SILVERADO, SIERRA
8 FORT WAYNE CHEVROLET, GMC SILVERADO, SIERRA
9 FREMONT GENERAL MOTORS VIBE, PRIZM

10 HAMTRAMCK BUICK, CADILLAC, PONTIAC DEVILLE, LUCERNE, LESABRE, ELDORADO
12 JANESVILLE GMC TAHOE, SUBURBAN, YUKON
14 LANSING PONTIAC STS
16 LINDEN CHEVROLET, GMC BLAZER, JIMMY,S10
17 LORDSTOWN PONTIAC SUNFIRE, CAVALIER, COBOLT, PURSUIT
18 MORAINE CHEVROLET, GMC, SAA JIMMY, ENVOY,9S7, BLAZER, TRAIL BLAZER
20 OKLAHOMA CITY CHEVROLET, GMC MALIBU, TRAIL BLAZER, ENVOY, EQUIPE, XUV
21 ORION PONTIAC, BUICK BONNEVILLE, LESABRE, AURORA, PARK AVENUE
22 OSHAWA GMC, PONTIAC ALLURE, REGAL
23 PONTIAC CHEVROLET,GMC SILVERADO, SIERRA
24 RAMOS ARIZPE BUICK, CHEVROLET, PONTIAC CAVALIER, SUNFIRE, RENDEZVOUS, AZTEK
25 SHREVEPORT CHEVROLET,GMC S10, COLOGNE, SONATA
26 SILAO CHEVROLET,GMC,SAAB SUBURBAN, YUKON XL
27 SPRING HILL STARLET SSL,ION,SC1,SC2,SL1,VUE

Table 2
Manufacturing plants comprising each plant group.

Plant group Plant ID number Manufacturing plant

1 1, 4, 5, 8, 14, 18, 23 ARLINGTON, DORAVILLE, FAIRFAX, FORT WAYNE, LANSING, MORAINE, PONTIAC
2 3, 10, 21 BOWLING, HAMTRAMCK, ORION
3 6, 9, 16, 17, 20, 22, 25 FLINT, FREMONT, LINDEN, LORDSTOWN, OKLAHOMA STATE, OSHAWA, SHREVEPORT
4 12 JANESVILLE
5 24, 26, 27 RAMOS ARIZPE, SILAO, SPRING HILL
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Fig. 1. Average spectra of plant groups 1 (a), 3 (b), and 4 (c) overlayed with the region 2000–400 cm�1 expanded.
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a doublet (Plant Groups 2 and 5) due to the presence of poly-
urethane. Spectra representative of these two categories are
shown in Figs. 1 and 2. An examination of the expanded finger-
print region (2000–400 cm�1) reveals five distinct spectral pat-
terns with each pattern designated as a specific Plant Group.

IR spectra of clear coats from the 21 g plants (2000–2006) were
then assigned to one of the five plant groups, i.e., groups of
manufacturing plants (see Fig. 3). The spectral region used to
differentiate the five plant groups includes both the fingerprint
region and the carbonyl band of the clear coat. Initially, the
carbonyl band was not excluded from the study because it
contributed to discrimination of the spectra among the five plant
groups. The spectral region from 4000 cm�1 to 2000 cm�1

included the C–H stretch, which is common to all organic samples,
and noise associated with the diamond transmission cell. As this
spectral region would not be expected to contain information
characteristic of the manufacturing plant of the paint sample, it
was not used in the development of the search prefilters.

A search prefilter was developed to classify spectra into one of
the five plant groups. Each plant group was further divided into

individual manufacturing plants or into subgroups of manufactur-
ing plants using a search prefilter to classify the individual spectra
within each plant group. For the development of the search
prefilter for plant groups, the spectral region of each clear coat
paint sample was limited to the extended fingerprint region
(2000–600 cm�1), see Fig. 4. Search prefilters for individual
assembly plants were developed from the fingerprint region
(1500–600 cm�1). We chose to limit ourselves to the fingerprint
region for individual plants to exclude the carbonyl band as it was
not sufficiently discriminating for this level of classification.

For the development of the search prefilters, transmittance
spectra, not absorbance spectra were used. The crucial issue for
the development of the search prefilters was deconvolving over-
lapping spectral responses using wavelets, not removing noise
associated with variations in the optical path length of each
sample which was obviated by adjusting the thickness (amount)
of the sample and the pressure applied by the diamond
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Fig. 2. Average spectra of groups 2 (a) and 5 (b) overlayed with the region 2000–400 cm�1 expanded.
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transmission cell. This ensured that an absorbance of one was
obtained for the carbonyl band, which possessed the highest
intensity, in all clear coat paint spectra.

The initial focus of this study was to develop a search prefilter
to classify the IR spectra by plant group. In this phase of the study,
the pattern recognition GA was directly applied to the standar-
dized IR spectra. The training set of 209 IR spectra (Thermo
Nicolet) was divided into 5 classes by plant group (see Table 3).
The first step in the study was to apply principal component
analysis (PCA) to the normalized and autoscaled IR spectral data.
PCA is a powerful method for uncovering hidden relationships in
complex multivariate data sets. Using this procedure is tanta-
mount to developing a new coordinate system that is better at
displaying the information present in the data than axes defined
by the original measurement variables. Fig. 5 shows a principal
component (PC) plot of the two largest principal components of
the 209 IR spectra and the 611 features from each IR spectrum.
Each paint sample is represented as a point in the PC map of the
data (1¼Plant Group 1, 2¼Plant Group 2, 3¼Plant Group 3,
4¼Plant Group 4, and 5¼Plant Group 5). The overlap of the clear
coats from each plant group in the map of the data is evident.

The next step was feature selection. A genetic algorithm for
pattern recognition analysis was used in the study to identify
spectral features characteristic of the profile of each plant group.
The pattern recognition GA identified features by sampling key
feature subsets, scoring their PC plots, and tracking those clear
coat paint samples or plant groups that were difficult to classify.
The boosting routine used this information to steer the population
to an optimal solution. After 200 generations, the GA identified 12
spectral features (i.e., transmittance values at 12 specified wave-
lengths) whose PC plot showed clustering of the data on the basis
of Plant Group membership (see Fig. 6).

A validation set of 242 IR spectra of clear coats from two Bio-
Rad instruments was employed to assess the predictive ability of
the 12 spectral features identified by the pattern recognition GA
and the efficacy of the alignment procedure used to transfer
the search prefilters for use by another instrument. Fig. 7 shows
the validation set samples projected onto the PC plot defined
by the 209 IR spectra (Thermo-Nicolet) and the 12 spectral
features identified by the pattern recognition GA. Each projected
sample lies in a region of the map with paint samples from the
same plant group. This result alone suggests that information
about the manufacturing plant is contained in the IR spectrum of
the clear coat paint smears.

Linear discriminant analysis (LDA) was also used to classify the
209 IR spectra in the training set. The training set data were
divided into 5 classes on the basis of plant group. LDA was used to
develop a classifier to separate the paint spectra by plant group. A
discriminant developed from the 12 spectral features identified by
the pattern recognition GA achieved a classification success rate of
100% for the training set. To further test the predictive ability of
these 12 features and the discriminant associated with them, a
validation set of 242 IR spectra of clear coat paint smears was
employed. Again, a classification success rate of 100% was achieved

for the IR spectra in the validation set. The results from the LDA
study, which are summarized in Table 4, are consistent with the
results obtained using PCA.

The next step in this study was to develop search prefilters to
classify paint spectra by manufacturing plant of the paint sample.
For each plant group, a search prefilter was developed to dis-
criminate the spectra by manufacturing plant within a plant
group. In this phase of the study, the spectral region used to
formulate discriminants was from 1500 cm�1 to 600 cm�1. The
carbonyl band, which was useful for discriminating the IR spectra
by plant group, did not prove to be informative for discriminating
spectra by manufacturing plant within a plant group due to the
similarity of the shape and the intensity of the carbonyl band for
manufacturing plants within a plant group.

Because of the similarity of the IR spectra within a plant group,
more powerful preprocessing methods were needed to extract
information about manufacturing plant from the IR spectra of the
clear coats. For this reason, the wavelet packet transform was
applied to each normalized IR spectrum using the MATLABWavelet
toolbox 3.0.4 (MathWorks, Natick, MA). Each IR spectrum was

Table 3
Training set and validation set for plant group search prefilter.

Group Training set samples
(Thermo-Nicolet)

Validation set
samples (Bio-Rad)

1 81 90
2 22 32
3 69 50
4 6 13
5 31 57
Total 209 242

Fig. 5. A PC plot of the two largest principal components of the 209 IR spectra and
the 611 features of each spectrum is shown. Each paint sample is represented as a
point in the PC plot of the data (1¼Plant Group 1, 2¼Plant Group 2, 3¼Plant Group
3, 4¼Plant Group 4, and 5¼Plant Group 5).

Fig. 6. A PC plot of the two largest principal components of the 209 IR spectra and
the 12 spectral features identified by the pattern recognition GA is shown. Each
paint sample is represented as a point in the PC plot of the data (1¼Plant Group 1,
2¼Plant Group 2, 3¼Plant Group 3, 4¼Plant Group 4, and 5¼Plant Group 5).
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iteratively passed through pairs of wavelet filters, which are scaled
wavelet functions, at different levels of decomposition. A wavelet
filter extracts either the high or low frequency signal components
from the IR spectrum. These components are expressed as wave-
let coefficients with each coefficient representing the similarity
(i.e., dot product) between a scaled wavelet and a section of the IR
spectrum. Higher-frequency signal components are extracted using
a compressed wavelet with rapidly changing features (i.e., low
scaled wavelet). This constitutes the high-pass wavelet filter. The
low-pass wavelet filter is a stretched out smoother wavelet
(i.e., high scaled wavelet) which extracts lower frequency signal
components. For each level of filtering, the spectrum is broken down
into a high frequency packet and low frequency packet using a pair of
high-pass and low-pass filters. Each packet in turn is further broken
down at the next level of decomposition using another pair of high-
pass and low-pass wavelet filters. This process will continue until the
required level of decomposition has been achieved.

The wavelet coefficients for each clear coat paint spectrum
were organized as a data vector. Each coefficient was autoscaled.
For this phase of the study, each IR spectrum was represented by
1080 wavelet coefficients using the Symlet6 mother wavelet at the
8th level of decomposition (i.e., 8Sym6) to denoise and deconvo-
lute each IR spectrum. This mother wavelet was selected based on
its ability to extract information about assembly plant from the IR
spectra. We observed a decrease in the ability of the pattern
recognition GA to correctly classify the IR spectra when other
mother wavelets were used to transform the spectral data. The
efficacy of 8Sym6 for this particular application can be explained
by a well known empirical rule used by workers in the field to
guide the selection of suitable wavelets for preprocessing their
data. If the spectrum contains very sharp peaks, the Haar or other
compact wavelets would be indicated for denoising, whereas the

Daubachies, which is a smoother wavelet, is recommended for
spectra containing broader peaks. For spectral peaks that lie
between these two extremes, such as mid-IR spectral data, the
Symlet 4 through Symlet 8 mother wavelets are expected to give
good results.

Fig. 8 shows a plot of the two largest principal components of
the 19 wavelet coefficients identified by the pattern recognition
GA for the manufacturing plants comprising the first plant group
(see Table 5). Each IR spectrum is represented as a point in the PC
plot of the data. Plant 18 (Moraine OH) is well separated from the
other manufacturing plants in the PC plot. Although the pattern
recognition GA was parameterized to search for wavelet coeffi-
cients to separate all assembly plants, the class structure of the
data detected by the GA when performing feature selection
indicated that only a single assembly plant (Plant 18, Moraine
OH) could be identified among the 7 assembly plants that
constitute this plant group. A visual examination of the spectra
from the other 6 manufacturing plants (Arlington TX, Doraville GA,
Fairfax KS, Fort Wayne IN, Lansing MI, and Pontiac MI) revealed
that they were super-imposable, which prevented further discri-
mination by assembly plant of these clear coats.

A validation set of 90 IR spectra (see Table 5) was employed to
assess the predictive ability of the 19 wavelet coefficients identi-
fied by the pattern recognition GA. We chose to map the 90
spectra directly onto the PC map defined by the 81 spectra of the
training set and the 19 wavelet coefficients identified by the
pattern recognition GA. Fig. 9 shows the validation set samples
projected onto the PC map developed from the training set data.
Each projected sample lies in a region of the map with paint
samples that have the same class label: either plant 18 or plants 1,
4, 5, 8, 14, and 23. Evidently, the pattern GA can identify wavelet

Fig. 7. Validation set samples (black) projected onto the PC plot of the Thermo-
Nicolet training set samples defined by 12 spectral features identified by the
pattern recognition GA.

Table 4
LDA analysis of 12 spectral features for plant group.

Group Samples Misses % Success Group Samples Misses Success

1 81 0 100 1 90 0 100
2 22 0 100 2 32 0 100
3 69 0 100 3 50 0 100
4 6 0 100 4 13 0 100
5 31 0 100 5 57 0 100
Total 209 0 100 Total 242 0 100

Fig. 8. A plot of the two largest principal components of the 19 wavelet coefficients
identified by the pattern recognition GA for the manufacturing plants comprising
the first plant group is shown. Each IR spectrum is represented as a point in the PC
plot. 18¼Moraine OH, 1¼Arlington TX, 4¼Doraville GA, 5¼Fairfax KS, 8¼Fort
Wayne IN, 14¼Lansing MI, and 23¼Pontiac MI.

Table 5
Training set and validation set for plant group 1.

Plants Training set samples
(Thermo-Nicolet)

Validation set
samples (Bio-Rad)

18 18 13
1, 4, 5, 8, 14, 23 63 77
Total 81 90
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coefficients characteristic of the manufacturing plant of a clear
coat paint smear. This suggests that search prefilters developed
from IR spectra of clear coats can be used to characterize paint
smears by manufacturing plant or can identify a limited number of
manufacturing plants associated with the clear coat paint layer.

Fig. 10 shows a plot of the two largest principal components of
the 22 IR spectra of the training set and the 23 wavelet coefficients
identified by the pattern recognition GA for the manufacturing

plants comprising the second plant group (see Table 6). Each IR
spectrum is represented as a point in the plot. All 3 manufacturing
plants (Bowling Green KY, Hamtramck MI, and Orion MI) are well
separated from each other in the PC plot of the data. Fig. 11 shows
the validation set samples (see Table 6) projected onto the PC map
developed from the 22 IR spectra of the training set and the 23
wavelet coefficients identified by the pattern recognition GA. Each
projected sample lies in a region of the map with paint samples
that have the same class label.

LDA was also used to classify the IR spectra in the training set.
Table 7 summarizes the results of the LDA study for both the
training set and validation set. Again, a classification success rate
of 100% was achieved for the IR spectra in both the training and
validation sets. For the IR spectra comprising the second plant
group, it was necessary to truncate the last 15 points due to noise
in the data. The two step procedure used to develop the search
prefilters for manufacturing plant (which involved applying wave-
lets to decompose each spectrum into wavelet coefficients and
using the pattern recognition GA to identify wavelet coefficients
correlated with manufacturing plant) is well suited for the devel-
opment of search prefilters to identify the source of a clear coat
paint smear.

Fig. 12 shows a plot of the two largest principal components of
the 82 training set samples and the 9 wavelet coefficients
identified by the pattern recognition GA for manufacturing plants
comprising the third plant group (see Table 8). IR spectra from two
manufacturing plants represented as 9 and 17 (Fremont CA and
Lordstown OH) and trucks from Oshawa Ontario (Plant 22) cluster
in distinct regions of the PC map of the data. GMC vehicles from
Oklahoma City (Plant 20) cluster in the same region of the map
with Buicks from Oshawa Ontario (Plant 22). Vehicles from Linden
NJ (Plant 16), trucks from Flint MI (Plant 6), trucks from Shreveport

Fig. 10. A plot of the two largest principal components of the 23 wavelet
coefficients identified by the pattern recognition GA for the manufacturing plants
comprising the second plant group is shown. 3¼Bowling Green KY,
10¼Hamtramck MI, 21¼Orion MI.

Table 6
Training set and validation set for plant group 2.

Plants Training set samples
(Thermo-Nicolet)

Validation set
samples (Bio-Rad)

3 6 10
10 9 13
21 7 8
Total 22 31

Fig. 11. PC plot of the validations set samples (black) projected onto the PC map
developed from the 21 IR spectra and 23 wavelet coefficients identified by the
pattern recognition GA. 3¼Bowling Green KY, 10¼Hamtramck MI, and
21¼Orion MI.

Table 7
LDA results for plant group 2.

Training – LDA Prediction – LDA

Plant Samples Misses % Success Plant Samples Misses % Success

3 6 0 100 3 10 0 100
10 9 0 100 10 13 0 100
21 7 0 100 21 8 0 100
Total 22 0 100 Total 31 0 100

Fig. 9. Validation set samples (black) projected onto a plot of the two largest
principal components of the 19 wavelet coefficients identified by the pattern
recognition GA for the manufacturing plants comprising the first plant group is
shown. Each IR spectrum is represented as a point in the PC plot. 18¼Moraine OH,
1¼Arlington TX, 4¼Doraville GA, 5¼Fairfax KS, 8¼Fort Wayne IN, 14¼Lansing MI,
and 23¼Pontiac MI.
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LA (Plant 25), Chevrolet cars from Oshawa Ontario (Plant 22), and
Chevrolet trucks and cars from Oklahoma City (Plant 20) also form
a distinct sample cluster. Two manufacturing plants, Oshawa
Ontario (Plant 22), and Oklahoma City (Plant 20), have clear coat
spectra that are distinct for specific models and lines. The net
result is multiple clusters for automobiles or trucks from these two
manufacturing plants.

Fig. 13 shows the validations set samples (see Table 8) projected
onto the PC map developed from the 82 IR spectra of the training
set and the 9 wavelet coefficients identified by the pattern
recognition GA. Each projected paint sample lies in a region of
the map with other paint samples that have the same class label.

In this study, paint samples from Plant Group 3, which were not
part of the original study, were added to both the training set and
validation set. These samples had been previously excluded from
this study because they were identified as outliers due to excessive
instrument noise. After rerunning these samples, our data for Plant
Group 3 was updated and the results were compared to a previous
study which did not include these samples. As the results were the
same, this supported our conclusion about the quality of this data
and justified our decision to rerun these samples.

Because Plant Group 4 was a single plant (Janesville WI) and
the IR spectra of all clear coats in Plant Group 5 were super-
imposable, it was not necessary to develop additional search
prefilters. Thus, a paint sample assigned to Plant Group 4 would
be from the Janesville WI plant and a paint sample assigned to
Plant Group 5 would be from the Ramos Arizpe (Mexico), Silao
(Mexico), or Spring Hill Tennessee plants.

5. Conclusions

In this study, a two step procedure for spectral library matching
of clear coat paint smears from the PDQ database is proposed.
First, search prefilters are employed to divide the IR spectra of the
clear coats into plant groups. A genetic algorithm for pattern
recognition analysis is used to identify discriminating wavelengths
characteristic of each plant group. Second, search prefilters are
developed for the IR spectra from each plant group to identify the
specific manufacturing plant or the set of manufacturing plants
that possess similar IR spectra to the unknown. In this phase of the
study, wavelets are used to preprocess the data. The wavelets
decompose each spectrum into wavelet coefficients which repre-
sent both the high and low frequency components of the signal.
Wavelet coefficients that contain information about the manufac-
turing plat of the paint samples are identified using the genetic
algorithm for pattern recognition analysis and feature selection.
This two step procedure is able to develop search prefilters
independent of the IR spectrometer used to generate the data as
the IR spectra are preprocessed using the instrumental line
function of the master instrument. The search prefilters have the
potential to facilitate spectral library searching in the PDQ data-
base as the size of the library is culled to those paint samples
obtained from the same assembly plant as the unknown.
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Training set and validation set for manufacturing plants from plant group 3.
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(Bio-Rad)

9 3 2
17 19 16
1 (Plant 22 trucks) 13 9
2 (Plants 20-General Motors
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11 8

3 (Plants 6-all Truck,16-all,
20-Chevrolet, 22-Chevrolet cars, 25
all Trucks)

36 37

Total 82 72

Fig. 13. PC plot of the validation set samples (black) projected onto the PC map
developed from the 82 IR spectra and 9 wavelet coefficients identified by the
pattern recognition GA. 2¼GMC (Oklahoma City) and Buick (Oshawa Ontario);
3¼Trucks (Flint MI), CHE and GMC (Linden NJ), Chevrolet (Oklahoma City),
Chevrolet (Oshawa Ontario), and GMC (Shreveport LA); 9¼Fremont CA,
17¼Lordstown OH.

Fig. 12. A plot of the two largest principal components of the 9 wavelet coefficients
identified by the pattern recognition GA for manufacturing plants comprising the
third plant group is shown. 2¼GMC (Oklahoma City) and Buick (Oshawa Ontario);
3¼Trucks (Flint MI), CHE and GMC (Linden NJ), Chevrolet (Oklahoma City),
Chevrolet (Oshawa Ontario), and GMC (Shreveport LA); 9¼Fremont CA,
17¼Lordstown OH.
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